Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2272645

ABSTRACT

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.

2.
Front Public Health ; 11: 1095202, 2023.
Article in English | MEDLINE | ID: covidwho-2272646

ABSTRACT

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Latin America/epidemiology , Pandemics , Genotype
3.
iScience ; : 105696, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2238787

ABSTRACT

The severe acute respiratory syndrome spread worldwide, causing a pandemic. SARS-CoV-2 mutations have arisen in the spike, a glycoprotein at the viral envelope and an antigenic candidate for vaccines against COVID-19. Here, we present comparative data of the glycosylated full-length ancestral and D614G spike together with three other transmissible strains classified by the World Health Organization as variants of concern: beta, gamma, and delta. By showing that D614G has less hydrophobic surface exposure and trimer persistence, we place D614G with features that support a model of temporary fitness advantage for virus spillover. Further, during the SARS-CoV-2 adaptation, the spike accumulates alterations leading to less structural stability for some variants. The decreased trimer stability of the ancestral and gamma and the presence of D614G uncoupled conformations mean higher ACE-2 affinities compared to the beta and delta strains. Mapping the energetics and flexibility of variants is necessary to improve vaccine development.

4.
BMJ Glob Health ; 7(12)2022 12.
Article in English | MEDLINE | ID: covidwho-2161842

ABSTRACT

OBJECTIVES: To classify the most up-to-date factors associated with COVID-19 disease outcomes in Brazil. DESIGN: Retrospective study. SETTING: Nationwide Brazilian COVID-19 healthcare registers. PARTICIPANTS: We used healthcare data of individuals diagnosed with mild/moderate (n=70 056 602) or severe (n=2801 380) COVID-19 disease in Brazil between 26 February 2020 and 15 November 2021. MAIN OUTCOME MEASURES: Risk of hospitalisation and mortality affected by demographic, clinical and socioeconomic variables were estimated. The impacts of socioeconomic inequalities on vaccination rates, cases and deaths were also evaluated. RESULTS: 15.6 million SARS-CoV-2 infection cases and 584 761 COVID-19-related deaths occurred in Brazil between 26 February 2020 and 15 November 2021. Overall, men presented a higher odds of death than women (OR=1.14, 95% CI 1.13 to 1.15), but postpartum patients admitted to hospital wards were at increased odds of dying (OR=1.23, 95% CI 1.13 to 1.34) compared with individuals without reported comorbidities. Death in younger age groups was notably higher in most deprived municipalities and also among individuals <40 years belonging to indigenous backgrounds compared with white patients, as shown by descriptive analysis. Ethnic/racial backgrounds exhibited a continuum of decreasing survival chances of mixed-race (OR=1.11, 95% CI 1.10 to 1.12), black (OR=1.34, 95% CI 1.32 to 1.36) and indigenous (OR=1.42, 95% CI 1.31 to 1.54) individuals, while those in most deprived municipalities also presented an increased odds of death (OR=1.38, 95% CI 1.36 to 1.40). Deprivation levels also affect the prompt referral of patients to adequate care. Our results show that the odds of death of individuals hospitalised for less than 4 days is more than double that of patients with close-to-average hospital stays (OR=2.07, 95% CI 2.05 to 2.10). Finally, negative vaccination status also increased the odds of dying from the disease (OR=1.29, 95% CI 1.28 to 1.31). CONCLUSIONS: The data provide evidence that the patterns of COVID-19 mortality in Brazil are influenced by both individual-level health and social risk factors, as well as municipality-level deprivation. In addition, these data suggest that there may be inequalities in the timely provision of appropriate healthcare that are related to municipality-level deprivation.


Subject(s)
COVID-19 , Male , Humans , Female , Adult , Retrospective Studies , SARS-CoV-2 , Brazil/epidemiology , Risk Factors , Socioeconomic Factors
5.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1991765

ABSTRACT

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Subject(s)
Brain , COVID-19 , Central Nervous System Viral Diseases , SARS-CoV-2 , Astrocytes/pathology , Astrocytes/virology , Brain/pathology , Brain/virology , COVID-19/complications , COVID-19/pathology , Central Nervous System Viral Diseases/etiology , Central Nervous System Viral Diseases/pathology , Humans , Post-Acute COVID-19 Syndrome
6.
Curr Radiopharm ; 15(3): 228-235, 2022.
Article in English | MEDLINE | ID: covidwho-1987309

ABSTRACT

BACKGROUND: This work aims to present a nuclear medicine imaging service's data regarding applying positron emission-computing tomography (PET/CT) scans with the radiopharmaceutical 68Ga-PSMA-HBED-CC (68Ga-PSMA-11) to diagnose prostate cancer clinical relapse. METHODS: Eighty patients with a mean age of 68.26 years and an average prostatic-specific antigen blood level of 7.49 ng/ml (lower concentration = 0.17 ng/ml) received 68Ga-PSMA-11 intravenously, and full-body images of PET-CT scan were obtained. Of the total of patients admitted to the imaging service, 87.5% were examined for disease's biochemical recurrence and clinical relapse, and 70.0% had a previous radical prostatectomy (RP). RESULTS: Of the patients without RP, 95.8% were detected with intra-glandular disease. The 68Ga- PSMA-11 PET/CT imaging results revealed small lesions, even in patients with low blood levels of prostatic-specific antigen, mainly in metastatic cancer cases in lymph nodes and bones. CONCLUSION: The 68Ga-PSMA-11 PET/CT imaging was essential in detecting prostate cancer, with significantly high sensitivity in detecting recurrent cases. Due to its inherent reliability and sensitivity, PET/CT scanning with 68Ga-PSMA-11 received an increasing number of medical requests throughout the present follow-up study, confirming the augmented demand for this clinical imaging procedure in the regional medical community.


Subject(s)
Gallium Radioisotopes , Prostatic Neoplasms , Aged , Follow-Up Studies , Gallium Isotopes , Humans , Male , Neoplasm Recurrence, Local/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/pathology , Radiopharmaceuticals , Reproducibility of Results
7.
J Neurochem ; 163(2): 113-132, 2022 10.
Article in English | MEDLINE | ID: covidwho-1956772

ABSTRACT

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Subject(s)
COVID-19 , Animals , Astrocytes , Carbon , Cricetinae , Disease Models, Animal , Glucose , Glutamine , Ketoglutaric Acids , Mesocricetus , Pyruvates , SARS-CoV-2
8.
Rev Iberoam Micol ; 39(2): 54-56, 2022.
Article in English | MEDLINE | ID: covidwho-1886067

ABSTRACT

BACKGROUND: Trichosporon asahii, an emerging fungal pathogen, has been frequently associated with invasive infections in critically ill patients. CASE REPORT: A 74-year-old male patient diagnosed with COVID-19 was admitted to an Intensive Care Unit (ICU). During hospitalization, the patient displayed episodes of bacteremia by Staphylococcus haemolyticus and a possible urinary tract infection by T. asahii. While the bacterial infection was successfully treated using broad-spectrum antibiotics, the fungal infection in the urinary tract was unsuccessfully treated with anidulafungin and persisted until the patient died. CONCLUSIONS: With the evolving COVID-19 pandemic, invasive fungal infections have been increasingly reported, mainly after taking immunosuppressant drugs associated with long-term broad-spectrum antibiotic therapy. Although Candida and Aspergillus are still the most prevalent invasive fungi, T. asahii and other agents have emerged in critically ill patients. Therefore, a proper surveillance and diagnosing any fungal infection are paramount, particularly in COVID-19 immunocompromised populations.


Subject(s)
COVID-19 , Mycoses , Trichosporon , Trichosporonosis , Urinary Tract Infections , Aged , Antifungal Agents/therapeutic use , Basidiomycota , Critical Illness , Humans , Male , Mycoses/drug therapy , Mycoses/microbiology , Pandemics , Trichosporonosis/diagnosis , Trichosporonosis/drug therapy , Trichosporonosis/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
9.
PeerJ ; 10: e13300, 2022.
Article in English | MEDLINE | ID: covidwho-1789658

ABSTRACT

Motivation: Since the identification of the novel coronavirus (SARS-CoV-2), the scientific community has made a huge effort to understand the virus biology and to develop vaccines. Next-generation sequencing strategies have been successful in understanding the evolution of infectious diseases as well as facilitating the development of molecular diagnostics and treatments. Thousands of genomes are being generated weekly to understand the genetic characteristics of this virus. Efficient pipelines are needed to analyze the vast amount of data generated. Here we present a new pipeline designed for genomic analysis and variant identification of the SARS-CoV-2 virus. Results: PipeCoV shows better performance when compared to well-established SARS-CoV-2 pipelines, with a lower content of Ns and higher genome coverage when compared to the Wuhan reference. It also provides a variant report not offered by other tested pipelines. Availability: https://github.com/alvesrco/pipecov.

11.
iScience ; 24(11): 103315, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1474644

ABSTRACT

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

14.
PLoS Comput Biol ; 17(6): e1009056, 2021 06.
Article in English | MEDLINE | ID: covidwho-1282290

ABSTRACT

In October of 2020, in response to the Coronavirus Disease 2019 (COVID-19) pandemic, our team hosted our first fully online workshop teaching the QIIME 2 microbiome bioinformatics platform. We had 75 enrolled participants who joined from at least 25 different countries on 6 continents, and we had 22 instructors on 4 continents. In the 5-day workshop, participants worked hands-on with a cloud-based shared compute cluster that we deployed for this course. The event was well received, and participants provided feedback and suggestions in a postworkshop questionnaire. In January of 2021, we followed this workshop with a second fully online workshop, incorporating lessons from the first. Here, we present details on the technology and protocols that we used to run these workshops, focusing on the first workshop and then introducing changes made for the second workshop. We discuss what worked well, what didn't work well, and what we plan to do differently in future workshops.


Subject(s)
COVID-19 , Computational Biology , Microbiota , Computational Biology/education , Computational Biology/organization & administration , Feedback , Humans , SARS-CoV-2
15.
Curr Opin Virol ; 49: 86-91, 2021 08.
Article in English | MEDLINE | ID: covidwho-1245923

ABSTRACT

It is intriguing to think that over millions of years, groups of nucleic acids got the chance to hold together with groups of proteins to build up what today is called a virus. Their only goal is to guarantee a successful replication inside a host. If their genome information is preserved, the task is accomplished. Viruses have evolved to infect organisms and propagate with high degree of adaptation, as it is the case of the SARS-CoV-2, agent of the 2020 world pandemic. The technological progress observed in the field of structural biology, especially in cryo-EM, has offered scientists the possibility of a better understanding of virus origins, behavior, and structural organization. In this minireview we summarize few perspectives about the origins and organization of viruses and the advances of cryo-EM to aid structural virologists to sample the virosphere.


Subject(s)
Cryoelectron Microscopy , Viruses/ultrastructure , Biological Evolution , COVID-19/virology , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Virus Physiological Phenomena , Viruses/chemistry , Viruses/classification
16.
Clinics ; 75:e2271-e2271, 2020.
Article in English | LILACS (Americas) | ID: grc-742570

ABSTRACT

OBJECTIVES: Brazil has rapidly developed the second-highest number of COVID-19 cases in the world. As such, proper symptom identification, including gastrointestinal manifestations, and relationship to health outcomes remains key. We aimed to assess the prevalence and impact of gastrointestinal symptoms associated with COVID-19 in a large quaternary referral center in South America. METHODS: This was a single-center cohort study in a COVID-19 specific hospital in São Paulo, Brazil. Consecutive adult patients with laboratory confirmed SARS-CoV-2 were included. Baseline patient history, presenting symptoms, laboratory results, and clinically relevant outcomes were recorded. Regression analyses were performed to determine significant predictors of the gastrointestinal manifestations of COVID-19 and hospitalization outcomes. RESULTS: Four-hundred patients with COVID-19 were included. Of these, 33.25% of patients reported &#8805;1 gastrointestinal symptom. Diarrhea was the most common gastrointestinal symptom (17.25%). Patients with gastrointestinal symptoms had higher rates of concomitant constitutional symptoms, notably fatigue and myalgia (p&lt;0.05). Gastrointestinal symptoms were also more prevalent among patients on chronic immunosuppressants, ACE/ARB medications, and patient with chronic kidney disease (p&lt;0.05). Laboratory results, length of hospitalization, ICU admission, ICU length of stay, need for mechanical ventilation, vasopressor support, and in-hospital mortality did not differ based upon gastrointestinal symptoms (p&gt;0.05). Regression analyses showed older age [OR 1.04 (95% CI, 1.02-1.06)], male gender [OR 1.94 (95% CI, 1.12-3.36)], and immunosuppression [OR 2.60 (95% CI, 1.20-5.63)], were associated with increased mortality. CONCLUSION: Based upon this Brazilian study, gastrointestinal manifestations of COVID-19 are common but do not appear to impact clinically relevant hospitalization outcomes including the need for ICU admission, mechanical ventilation, or mortality.

17.
Clinics (Sao Paulo) ; 75: e2271, 2020.
Article in English | MEDLINE | ID: covidwho-910279

ABSTRACT

OBJECTIVES: Brazil has rapidly developed the second-highest number of COVID-19 cases in the world. As such, proper symptom identification, including gastrointestinal manifestations, and relationship to health outcomes remains key. We aimed to assess the prevalence and impact of gastrointestinal symptoms associated with COVID-19 in a large quaternary referral center in South America. METHODS: This was a single-center cohort study in a COVID-19 specific hospital in São Paulo, Brazil. Consecutive adult patients with laboratory confirmed SARS-CoV-2 were included. Baseline patient history, presenting symptoms, laboratory results, and clinically relevant outcomes were recorded. Regression analyses were performed to determine significant predictors of the gastrointestinal manifestations of COVID-19 and hospitalization outcomes. RESULTS: Four-hundred patients with COVID-19 were included. Of these, 33.25% of patients reported ≥1 gastrointestinal symptom. Diarrhea was the most common gastrointestinal symptom (17.25%). Patients with gastrointestinal symptoms had higher rates of concomitant constitutional symptoms, notably fatigue and myalgia (p<0.05). Gastrointestinal symptoms were also more prevalent among patients on chronic immunosuppressants, ACE/ARB medications, and patient with chronic kidney disease (p<0.05). Laboratory results, length of hospitalization, ICU admission, ICU length of stay, need for mechanical ventilation, vasopressor support, and in-hospital mortality did not differ based upon gastrointestinal symptoms (p>0.05). Regression analyses showed older age [OR 1.04 (95% CI, 1.02-1.06)], male gender [OR 1.94 (95% CI, 1.12-3.36)], and immunosuppression [OR 2.60 (95% CI, 1.20-5.63)], were associated with increased mortality. CONCLUSION: Based upon this Brazilian study, gastrointestinal manifestations of COVID-19 are common but do not appear to impact clinically relevant hospitalization outcomes including the need for ICU admission, mechanical ventilation, or mortality.


Subject(s)
Angiotensin Receptor Antagonists , Coronavirus Infections , Pandemics , Pneumonia, Viral , Adult , Aged , Angiotensin-Converting Enzyme Inhibitors , Betacoronavirus , Brazil/epidemiology , COVID-19 , Cohort Studies , Hospitals, Public , Humans , Male , Outcome Assessment, Health Care , Pneumonia, Viral/epidemiology , SARS-CoV-2
18.
Rev Med Virol ; 31(2): e2157, 2021 03.
Article in English | MEDLINE | ID: covidwho-731139

ABSTRACT

Understanding Covid-19 pathophysiology is crucial for a better understanding of the disease and development of more effective treatments. Alpha-1-antitrypsin (A1AT) is a constitutive tissue protector with antiviral and anti-inflammatory properties. A1AT inhibits SARS-CoV-2 infection and two of the most important proteases in the pathophysiology of Covid-19: the transmembrane serine protease 2 (TMPRSS2) and the disintegrin and metalloproteinase 17 (ADAM17). It also inhibits the activity of inflammatory molecules, such as IL-8, TNF-α, and neutrophil elastase (NE). TMPRSS2 is essential for SARS-CoV-2-S protein priming and viral infection. ADAM17 mediates ACE2, IL-6R, and TNF-α shedding. ACE2 is the SARS-CoV-2 entry receptor and a key component for the balance of the renin-angiotensin system, inflammation, vascular permeability, and pulmonary homeostasis. In addition, clinical findings indicate that A1AT levels might be important in defining Covid-19 outcomes, potentially partially explaining associations with air pollution and with diabetes. In this review, we focused on the interplay between A1AT with TMPRSS2, ADAM17 and immune molecules, and the role of A1AT in the pathophysiology of Covid-19, opening new avenues for investigating effective treatments.


Subject(s)
COVID-19/metabolism , alpha 1-Antitrypsin/metabolism , ADAM17 Protein/metabolism , Animals , Humans , Protective Factors , Serine Endopeptidases/metabolism
19.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-670096

ABSTRACT

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Subject(s)
Betacoronavirus/physiology , Blood Glucose/metabolism , Coronavirus Infections/complications , Diabetes Complications/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Monocytes/metabolism , Pneumonia, Viral/complications , Adult , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Female , Glycolysis , Humans , Inflammation/complications , Inflammation/metabolism , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL